
Homework 4

PHYS798C Fall 2025

Due Tuesday, 25 November, 2025

1 Little-Parks Experiment and Flux Quantization

Consider a thin superconducting �lm of thickness d << λ deposited onto a cylindrical
dielectric �lament (like a human hair for example). The radius of the �lament's cross
section is R. At room temperature, the �lament is placed in a longitudinal magnetic �eld
and then cooled down to a temperature below Tc. Then the external �eld is switched o�.

(a) Use �uxoid quantization in the thin cylindrical �lm to show that m∗vs(2πR) +
q∗Φ = nh, where Φ is the trapped �ux, n is a positive or negative integer or zero, and h
is Planck's constant.

(b) Solve for the super�uid velocity vs in terms of Φ/Φ0 (recall that Φ0 = h/e∗). Plot
v2s vs. Φ/Φ0 for 5 di�erent choices of n centered on n = 0. This is e�ectively the kinetic
energy of the supercurrent �ow as a function of Φ/Φ0.

(c) To minimize the kinetic energy as a function of Φ/Φ0, the superconductor will
choose di�erent values of n (i.e. change the number of trapped �ux) as the �ux changes.
This involves creating phase slips by suppressing Tc and allowing n to change by ±1.
Recall that the superconducting order parameter varies with vs as |ψ|2 = |ψ∞|2

(
1− (m

∗ξGLvs
ℏ )2

)
.

Show that the order parameter will be suppressed to zero when 1
ξ2GL(T

∗)
=
(
m∗vs
ℏ

)2
, where

T ∗ represents the suppresed Tc created by the screening supercurrent. Use the de�nition
of the temperature-dependent GL coherence length ξGL(T

∗) = ξGL(0)/
√
1− t∗, where

t∗ = T ∗/Tc, to solve for (and plot) ∆Tc/Tc ≡ T ∗−Tc

Tc
in terms of (n − Φ/Φ0)

2. These
periodic variations in Tc vs. Φ/Φ0 are measured in the Little-Parks experiment. Hint :
see �The archived Little-Parks experiment lecture� under Lecture 18 in the Sup. Mat. on
the class website.

2 Long Josephson Junctions

Consider a pair of identical semi-in�nite superconductors sandwiching an insulating material
of thickness d that supports Josephson tunneling. Consider the coordinate system and
integration loop shown in the Figure. We will derive two wave equations for electromagnetic
waves propagating in this parallel plate waveguide.
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(a) Assume that the integration loops go deep enough into the superconductors such
that the currents and �elds go to zero for the segments a − d and b − c of length dz.

Apply Faraday's law
−→▽ ×

−→
E = −∂

−→
B
∂t

on this loop (recall the integral form:
∮
C
E⃗ · d⃗l =

− ∂
∂t

∫∫
S
B⃗ · dS⃗), and operate with ∂/∂z to derive the result

∂2E0
x

∂z2
= −

(
2λ+ d

d

)
∂2B0

y

∂t∂z
where the superscript 0 denotes quantities in the insulating layer.
(b) Take a similar integration loop normal to the z−axis and derive the result,
∂2E0

x

∂y2
=

(
2λ+ d

d

)
∂2B0

z

∂t∂y
.

(c) Now operate with ∂/∂t on the x−component of Ampere's Law
−→▽×

−→
B = µ0

(−→
J + ε0

∂
−→
E
∂t

)
to obtain the result

1

µ

(
∂2B0

z

∂y∂t
−
∂2B0

y

∂z∂t

)
=
∂Jx
∂t

+ ϵ
∂2E0

x

∂t2

(d) Now substitute the derivatives of B0 from (a) and (b) to derive the result,(
∂2

∂y2
+

∂2

∂z2
− 1

v2ph

∂2

∂t2

)
E0

x =
1

εv2ph

∂Jx
∂t

where vph = 1√
εµ

√
d

d+2λ
. Note that if ∂Jx

∂t
= 0 then this equation describes TEM

waves propagating down a superconducting waveguide, known as Swihart modes. The
inductance of the waveguide is proportional to L ∼ d+2λ and the capacitance C ∼ 1/d,

hence vph ∼ 1√
LC

∼
√

d
d+2λ

. As the penetration depth grows the phase velocity of the

wave can be slowed signi�cantly.
(e) Now assume that there is Josephson coupling between the two plates through

the insulator. Taking the top plate as the positive potential we have from the second
Josephson equation

∂γ
∂t

= 2eV
ℏ = −2eE0

xd
ℏ

Solving this for E0
x and using the �rst Josephson equation, derive the result(

∂2

∂y2
+

∂2

∂z2
− 1

v2ph

∂2

∂t2

)
γ (y, z) =

sin γ (y, z)

λ2J
,

where we have taken the t = 0 time reference where γ = 0 in the time integration and
λ2J ≡ ℏ/ [2eJcµ (2λ+ d)] is the Josephson penetration depth. This is a form of the famous
sine-Gordon equation. Estimate the Josephson penetration depth for a long junction with
2λ+ d = 90 nm and Jc = 102A/cm2.

(f) Consider a linearlized solution to the Josephson wave equation. Assume small
phase variation across the junction as a function of time so that γ (y, z, t) = γ0 (y, z) +
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γ1 (y, z, t), where γ0 is a spatially-dependent time average, and γ1 ≪ γ0. With this
substitution and assuming that cos γ1 ≃ 1, show that(

∂2

∂y2
+

∂2

∂z2
− 1

v2ph

∂2

∂t2

)
γ1 =

(
cos γ0
λ2J

)
γ1

Now assume that γ0 is a constant. Assume a travelling wave solution of the form

γ1 = e−i(ωt−
−→
β ·−→r ) and �nd the dispersion relation ω2 = β2v2ph + ω2

p where the Josephson

plasma frequency is de�ned as ω2
p =

(
vph
λJ

)2
cos γ0. Plot the dispersion relation for both

the Swihart and Josephson modes. How can you tune the Josephson plasma frequency?
In the limit β = 0 there is no rf magnetic �eld present and there is a periodic exchange
of energy between the electric �eld and the Josephson coupling energy, in close analogy
with cold plasma oscillations.
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